Your browser does not support JavaScript!
國立清華大學天文研究所 NTHU Institute of Astronomy
首頁 > 近期演講

Time Coordinate: 3:30 pm 24th March 2017 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Min-Kai Lin (ASIAA)

Title: Hydrodynamic processes in planet formation


Planet formation is rapidly developing field in astronomy. We are in an era of not only regular detections of extra-Solar planets, but also the planet formation process itself. Recent observations of protoplantary disks reveal stunningly detailed sub-structures such as gaps, rings, spirals and lopsided asymmetries. Understanding the origin of these structures, for example due to unseen planets or dynamical instabilities, can place constraints on the physical conditions for planet formation. I will discuss some works on hydrodynamic processes important to protoplanetary disk/planet evolution and in explaining observations. These include gravitational instabilities, vortex formation, and the vertical shear instability for generating turbulence in disks. I will also present a new effort to study dusty protoplanetary disks through a set of modified fluid dynamic equations.

Time Coordinate: 3:30 pm 17th March 2017 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Hsi-Wei Yen (European Southern Observatory, Germany)

Title: Formation and Evolution of Protoplanetary Disks


Protoplanetary disks are sites of planet formation. It is essential to study how protoplanetary disks form in dense cores and evolve, to understand the environment of planet formation. In this presentation, I will introduce our observational studies on protoplanetary disks at different evolutionary stages, from the formation and growth of protoplanetary disks around deeply embedded young protostars (Class 0 stage), to the gas dynamics of the material surrounding protoplanetary disks around more evolved protostars (Class I stage), and to the properties of a larger sample of protoplanetary disks around young stellar objects after the main accretion phase (Class II stage).

Two talks on 3/14 (Tue) and 3/17 (Fri)

Location: Room 521

Time: 12:10 pm


(1) Speaker: Prof. Wenwu Tian (Calgary University, Canada & National Astronomical Observatories of China)

Time: 12:10pm, 3/14 (Tue), 2017

Title: Supernova remnants and the origin of cosmic rays


I will first give a short introduction to Supernova Remnant (SNR), then focus on a recent hotspot of SNR research: Studying the origin of cosmic rays by TeV gamma-ray survey in the Galactic plane. TeV SNRs show great promise to increase our understanding of cosmic rays. By neutral hydrogen (HI) 21 cm continuum and HI line observations to some TeV SNRs, we have measured their kinematic distances which help improving our understanding of cosmic rays' origin.


(2) Speaker: Dr. Jeng-Lun Chiu (Space Sciences Lab, UC Berkeley, USA)

Time: 12:10pm, 3/17 (Fri), 2017

Title: The Compton Spectrometer and Imager (COSI) Project


The Compton Spectrometer and Imager (COSI) project is an effort to develop the next generation Compton telescope of higher sensitivity. COSI is currently a balloon-borne telescope project. The heart of COSI is an array of 12 cross-strip germanium detectors, each with 15mm x 80mm x 80mm dimension and full 3D position resolution of less than 2 mm^3. COSI performs Compton spectroscopic imaging in the 0.2-10 MeV gamma-ray band with a field of view about 50 degrees across and capability of polarization measurement. It is also well suitable for monitoring transient events. Several COSI balloon flights have been conducted. The most recent flight was launched from Wanaka, New Zealand, in May 2016 with a super-pressure balloon flying for 47 days. During this flight, COSI discovered GRB160530A and detected several sources, including the 511-keV emission from the galactic center, the Crab, Cen A, and Cyg X-1. The COSI collaboration is now working for the next flight in spring 2019, to launch again from Wanaka, New Zealand, for a 100-day flight. I will report the current status of the COSI project. COSI is a join effort of several institutions in Taiwan, US and France.

Time Coordinate: 3:30 pm 3rd March 2017 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Pei-Ying Hsieh (ASIAA)

Title: The inflow and outflow in the Galactic center of the Milky Way

Time Coordinate: 2 p.m. 24th Feb. 2017 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Prof. Paul M. Ricker (University of Illinois, USA)

Title: There Is Life after Stellar Middle Age

The discovery of how stars function and evolve counts among the twentiethcentury's greatest scientific achievements. In the twenty-first century the problems that still challenge us are intrinsically multidimensional and multiscale: star formation, supernovae, stellar convection and mass loss, and common envelope evolution, among others. Given the extreme conditions and large spatial and temporal ranges of stellar evolution, our theoretical understanding of this subject rests heavily on numerical simulations containing a mixture of modeling and first-principles calculation. I will discuss the application of these techniques to the evolution of common envelope systems and explain the potential significance of advances in this area for a wide range of astrophysical problems.

Speaker: Dr. Hsiang-Yi Yang (University of Maryland, USA)

Time:      10:30 am, Feb 17, 2017 (Fri)

Venue:    R620, Physics Building

Title: The Microphysics of AGN Feedback

Feedback from active galactic nuclei (AGN) is one of the most important processes governing the formation and evolution of galaxies and galaxy clusters. It is believed to be responsible for inhibiting the formation of massive galaxies and for solving the long-standing cooling-flow problem in galaxy clusters. 

A lot of understanding of AGN feedback has been gained using hydrodynamic simulations; however, some of the relevant physical processes are unresolvable or not captured by pure hydrodynamics, such as plasma effects and cosmic-ray (CR) physics.

In this talk, I will present how we use simulations that incorporate this microphysics to understand how AGN jets feedback on galactic and cluster scales. Specifically, I will discuss the roles of thermal conduction and CRs in addition to purely hydrodynamic models. I will also talk about how we could use multi-messenger observations of the Fermi bubbles as a nearby laboratory for studying AGN feedback. Finally, I will conclude with open questions and future prospects of applying simulations beyond hydrodynamics to various interesting astrophysical systems.

Time Coordinate: 1:30 pm 15th Feb. 2017 (Tuesday)

Space Coordinate: NTHPhysics Building, R019

Speaker: Dr. Kuo-Chuan Pan (Michigan State University, USA)

Title: Self-consistent Neutrino-Driven Core-Collapse Supernova Simulations with Neutrino Transport

Student Presentation

Time Coordinate: 3:30 pm 6th Jan. 2017 (Friday)

Space Coordinate: NTHU General Building II, R521


Speaker A: Li-Wen Liao (NTHU)

Title: SiO Shocks of the Protostellar Jet HH 212


Speaker B: Lu Yin (NTHU)

Title: B-mode Polarization of the CMB

Time Coordinate: 3:30 pm 30th Dec. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. I-Chun Shih (GEPI, Paris Observatory, France)

Gaia Data Release 1 and what to expect in the future releases

Gaia mission aims to provide the most precise stellar atlas in the human history so far. Its result will touch many fields of astronomical science and everyone can access them openly. This talk will introduce the nature of the mission, the content of the Data Release 1 and its limitations. More importantly, how can you prepare yourself with the data (the present and the future) for your research.

Student Presentation

Time Coordinate: 3:30 pm 23rd Dec. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521


Speaker A: Chia-Hsuan Cheng (NTHU)

Title: The host's density perturbation from satellite system


Speaker B: Sheng-Jun Lin (NTHU)

Title: The Deuterium Fraction in Dense Cores

Student Presentation

Time Coordinate: 3:30 pm 16th Dec. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521


Speaker A: Chao-Hsiung Tseng (NTHU)

Title: The 2015 Summer V404 CYG Outburst


Speaker B: Valerie Wong (NTHU)

Title: The Pan-STARRS1 distant z>5.6 quasar survey

Student Presentation

Time Coordinate: 3:30 pm 9th Dec. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521


Speaker A: Marvis Cheong (NTHU)

Accretion processes in protostar and protostellar disk formation


Speaker B: Hao-Yuan Duan (NTHU)

Searching the First Hydrostatic Core Candidates

First Hydrostatic Cores (FHCs) are the transient phase between prestellar cores and Class 0 protostars. It is a key to understand the earliest stage of star formation. Recently, some potential candidates of FHCs have been suggested, but not enough to enable statistical property studies. In the talk, I will summarize the papers which propose candidates of FHCs. I will also talk about my recently work on searching FHCs candidates in Perseus molecular cloud.

Time Coordinate: 3:30 pm 2nd Dec. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Ya-Wen Tang (ASIAA)

Planet formation in AB Auriga: imaging inner gaseous spirals inside the dust cavity

Studies of planet forming disks have rapidly advanced in the last few years thanks to high contrast high angular resolution images obtained in the optical/near infrared and in the mm/submm regime. In the meantime, several exoplanets have been found by direct imaging in nearby debris disks. Studying planet formation in younger systems where the molecular gas and dust material are not yet fully dissipated is a clue to understand how a planetary system forms and evolves while the disk dissipates.

In order to trace the structures induced by embedded objects, such as companion or planets, I observed the 12CO 2-1 transition at 0.1 angular resolution in the AB Aurigae system using ALMA. The 12CO 2-1 gas exhibits two spiral-like features within 0.7" (radius, r, 90AU) away from the star. These spirals are trailing and non-self-gravitating. Two possible locations of the embedded objects are suggested in order to explain the observed features in AB Aurigae system.

Time Coordinate: 3:30 pm 25th Nov. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Tetsuya Hashimoto (NTHU)


Subaru observations of dark Gamma-Ray Burst host galaxy

Study of host galaxies of Long Gamma Ray Burst (GRB) is a key to understanding the origin of GRB. We focus on the metallicity environment of optically 'dark' GRBs, which is a missing population due to the faintness of their afterglows. We found that the host galaxy of GRB 070306 and 080325 are among the highest metallicity in current GRB host samples in contrast to the theoretical low-metallicity requirement. I will discuss the metallicity environment and origin of dark GRBs in comparison with the so-called fundamental metallicity relation of star-forming galaxies.

Time Coordinate: 3:30 pm 18th Nov. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Hsing-Wen Lin (National Central University)

The Neptune Trojans and the Vertical Moving Trans-Neptunian Objects

Many primitive bodies exist in the vast regions of the solar system beyond Jupiter, of which the largest population is the trans-Neptunian objects (TNOs). The details of the orbital distribution of the TNOs preserve information about the evolution of the solar system. In this talk, I will introduce our two recent works, which are related to TNO studies: 1. The Neptune Trojans: dynamically very hot or not that hot? and 2. The vertical moving TNOs: is there a perpendicular Kuiper Belt?

Currently 17 Neptune Trojans (NTs), the asteroids in co-orbital 1:1 mean motion resonance with Neptune, have been found. The very high and wide orbital inclination distribution of NTs implies an unusual formation mechanism of NTs; the NT have to be captured from a pre-excited planetesimal disk. Recently, we used Pan-STARRS 1 (PS1) survey data to study the orbital distribution of NTs and found that the inclination distribution is rather low compare with the results of previous studies. The new result may suggest that NTs can be captured from a planetesimal disk without pre-excited.

In the PS1 survey data, we also identified an unusual TNOs, 2011 KT13 (nicknamed Niku). This object has an 110 degree orbital inclination; it has a retrograde and almost vertical moving orbit. Together with other five high-inclination TNOs, the six vertical moving objects appear to occupy a common orbital plane. We found that this alignment is statistical significant; the probability occurring by chance is only 0.016%. Our simple simulations including the hypothetical Planet Nine fail to maintain the common orbital plane, therefore, an unknown mechanism is required to explain the observed clustering.

Time Coordinate: 3:30 pm 11th Nov. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Prof. Uri (Evgeny) Griv (Ben-Gurion University, Israel)

The Nearby Spiral Density-Wave Structure of the Galaxy

Distances and velocities of coeval groups of objects in our Galaxy star-forming regions, OB associations, HII regions and long-period Cepheids were recently measured. Within the Lin-Shu density wave proposal for the galactic spiral structure, we use these new data to find both the geometrical and physical parameters of the wave structure within a few kiloparsecs from the Sun. It is also proposed that better data samples provided by Gaia mission could reveal in the near future whether the wave structure near the Sun reported here does indeed exist.

Time Coordinate: 3:30 pm 4th Nov. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Prof. Pai-hsien Jennifer Hsu (NTHU)


The Large Hadron Collider: What's it all about?

I will give an introduction about the Large Hadron Collider (LHC) and the ATLAS experiment at the LHC, of which NTHU has joined since 2014. Recent highlights and current status of the LHC and ATLAS will also be presented.

Time Coordinate: 3:30 pm 28th Oct. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Kouichi Hirotani (TIARA/ASIAA)

High-energy and very-high-energy emissions from the direct vicinity of rotating black holes

In a black hole magnetosphere, when the plasma accretion rate is low, the radiatively inefficient accretion flow (RIAF) can no longer sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate migratory electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma-rays via curvature and inverse-Compton (IC) processes. Some of such gamma-rays collide with the submillimeter-IR photons emitted from the RIAF to materialize as pairs. The created pairs polarize to partially screen the original acceleration electric field. It is found that the gap emissions from several nearby black hole transients are detectable with Fermi/LAT and and future ground-based atmospheric Cherenkov telescopes like CTA. Since their HE/VHE gamma-ray fluxes are predicted to exhibit anti-correlation with the IR/optical fluxes, it is possible to discriminate the gap emission from the jet.

Time Coordinate: 3:30 pm 21th Oct. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Eswaraiah Chakali (NTHU)

On the morphological correspondence among magnetic fields,filaments, bipolar bubbles in RCW57A

The influence of magnetic fields (B-fields) in the formation and evolution of bipolar bubbles due to the expanding ionization fronts driven by the HII regions that are formed and embedded in filamentary molecular clouds has not been well-studied yet. In addition to the anistropic expansion of ionization fronts in a filament, B-fields are expected to introduce an additional anisotropic pressure in favor of expansion and propagation of ionization fronts to form a bipolar bubble. 

I will present the results based on near-infrared polarimetric observations towards the central area of the star-forming region RCW57A hosting an HII region, a filament and a bipolar bubble. Polarization measurements of reddened background stars in the JHKs-bands reveal that B-fields, that are threaded perpendicular to the filament long axis, are configured into an hour-glass morphology thereby closely following the structure of the bipolar bubble which manifests one-to-one correspondence between them. B-field pressure is found to be dominated over thermal, turbulent and radiative pressures in the region, thereby reinforcing the fact that B-fields indeed playing an influenceable role. Based on the observed morphological correlations among the the B-fields, filament and bipolar bubble, we believe that the B-fields are important not only in cloud contraction to form a filament, gravitational collapse and star formation in it, but also in the formation and evolution of bipolar bubble in RCW57A. I also present few slides on my involvement on other projects related to optical/NIR/sub-mm polarimetry.

Time Coordinate: 3:30 pm 14th Oct. 2016 (Friday)

Space Coordinate: NTHU General Building II, R521

Speaker: Dr. Yu-Ting Wu (ASIAA)

Title: The Dynamical Evolution of Double-barred Galaxies

About one-third of barred-galaxies have smaller secondary bars embedded within outer primary bars, and are so called double-barred galaxies. An important reason for studying double-barred galaxies is that the existence of an inner bar provides a mechanism for driving gas inflow further toward the nucleus of a galaxy.

With high resolution N-body simulations, we explore the formation and evolution of these systems in terms of initial galaxy models dependent on disk thickness and disk kinematics. We show that for suitable initial conditions long-lived double-barred galaxies form, and their lifetime can be greater than 3.5 Gyr, which is compatible with the high frequency of double-barred galaxies. We study their dynamics and determine the evolution of their respective pattern speeds. The pattern speeds and the effective potential neighboring the corotation resonance region are strongly time-dependent in any rotating frame.